
J Stat Phys (2010) 138: 619–644
DOI 10.1007/s10955-009-9904-0

Annealed Lower Tails for the Energy
of a Charged Polymer

Amine Asselah

Received: 10 July 2009 / Accepted: 7 December 2009 / Published online: 15 December 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider a randomly charged polymer. Each monomer carries a random
charge, and only charges on the same site interact pairwise. We study the lower tails of the
energy, when averaged over both randomness, in dimension three or more. As a corollary,
we obtain the correct temperature-scale for the Gibbs measure.

Keywords Random polymer · Large deviations · Random walk in random scenery ·
Self-intersection local times

1 Introduction

In this paper, we study the lower tails for the energy of a polymer. This complements a
companion paper [2] dealing with the upper tails. Lower and upper tails are different stories,
and the two papers are independent from each other, though they use the same model, and
the same notations. Our polymer is a linear chain of n monomers each carrying a random
charge, and sitting sequentially on the positions of a symmetric random walk.

(i) The symmetric random walk on Z
d is denoted {S(n),n ∈ N}. When S(0) = z ∈ Z

d , its
law is denoted Pz.

(ii) The random field of charges is denoted {η(n),n ∈ N}. The charges are centered i.i.d.
with a finite fourth moment, and variance 1. We denote by η a generic charge variable,
and the charges’ law is denoted by Q. Thus, EQ[η] = 0, and EQ[η2] = 1.

The monomers interact pairwise only when they occupy the same site on the lattice. The
interaction produces an energy

Hn =
∑

0≤i �=j<n

η(i)η(j)1{S(i) = S(j)}. (1.1)
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Our toy-model comes from physics, where it is used to model proteins or DNA fold-
ing. However, physicists’ usual setting differs from ours by three main features. (i) Their
polymer is usually quenched: a typical realization of the charges is fixed, and the average
is over the walk. (ii) A short-range repulsion is included by considering random walks such
as the self-avoiding walk or the directed walk. (iii) The averages are performed with respect
to the so-called Gibbs measure: a probability measure obtained from P0 by weighting it
with exp(βHn), with real parameter β . When β is positive, the Gibbs measure favors con-
figuration with large energy; in other words, alike charges attract each other: this models
hydrophobic interactions, where the effect of avoiding the water solvent is mimicked by an
attraction among hydrophobic monomers. When β is negative, alike charges repel: this mod-
els Coulomb potential, and describes also the effective repulsion between identical bases of
RNA. The issue is whether there is a critical value βc(n), such that as β crosses βc(n), a
phase transition occurs. For instance, Garel and Orland [13] observed a phase transition for
a critical β , say βc(n), of order 1/n: as β crosses βc(n), the polymer goes from a collapsed
shape to a random-walk like shape. Kantor and Kardar [14] discussed the quenched model
for the case β < 0, that is when alike charges repel. Some heuristics (dimensional analysis
on the continuum version) suggests that the (upper) critical dimension is 2: for d ≥ 3, the
polymer looks like a simple random walk, whereas when d < 2, its average end-to-end dis-
tance is nν with ν = 2

d+2 . Let us also mention studies of Derrida, Griffiths and Higgs [11]

and Derrida and Higgs [10]: both study the quenched Gibbs measure exp(−βHn)dP̃0, with
β > 0, for a one dimensional directed random walk P̃0, and obtain evidence for a phase
transition (a so-called weak freezing transition).

Our interest stems from recent mathematical works of Chen [8], and Chen and Khosh-
nevisan [9], dealing with central limit theorems for Hn. Chen [8] establishes also an annealed
moderate deviation principle, under the additional assumption that E[exp(λη2)] < ∞, for
some λ > 0. More precisely, with the annealed law denoted P , d ≥ 3, n

1
2 � √

nξn � n
2
3 ,

(for two positive sequences {an, bn, n ∈ N}, we say that an � bn, when lim sup log(an)

log(bn)
< 1),

lim
n→∞

1

ξ 2
n

log

(
P

(
± Hn√

n
≥ ξn

))
= − 1

2cd

, where cd =
∑

n≥1

P0(S(n) = 0). (1.2)

Our study complements the work [8]. We study the annealed probability that {−Hn > ξn}
for ξn ≥ n

2
3 . Also, we consider the simplest aperiodic walk: the walk jumps to a nearest

neighbor site or stays still with equal probability.
As in [2], we rewrite the energy into a convenient form. For z ∈ Z

d , and n ∈ N, we call
ln(z) the local times, and q̌n(z) the local charges. That is

ln(z) =
n−1∑

k=0

1{S(k) = z}, and q̌n(z) =
n−1∑

k=0

η(k)1{S(k) = z}.

We write Hn = ∑
z(X̌n(z) + Yn(z)) with

X̌n(z) = q̌2
n(z) − ln(z), and Yn(z) = ln(z) −

n−1∑

i=0

η(k)21{S(k) = z}.
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Now,

Yn =
∑

z∈Zd

Yn(z) =
n−1∑

i=0

(1 − η2(i)), (1.3)

is a sum of centered independent random variables, and its large deviation asymptotics are
well known (see below Remark 2.2). Thus, we focus on X̌n = ∑

Zd X̌n(z). Since we are
interested in annealed estimates, we could freeze a random walk realization, and relabel
charges on each site z ∈ Z

d , from 1 to ln(z). Thus, we would obtain a key equality in law

X̌n
law= Xn :=

∑

z∈Zd

ln(z)(ζz(ln(z)) − 1), where for m ∈ N\{0}, ζz(m) =
(

1√
m

m∑

i=1

ηz(i)

)2

,

(1.4)
where {ηz(i), z ∈ Z

d , i ∈ N} is an i.i.d. sequence with ηz(i) ∼ η, and we still denote its
law with Q. Now, the expression of Xn is related to a process known as random walk in
random scenery, with the difference that the random scenery depends on the realization of
the random walk.

We first present our lower tails estimates, and then provide some heuristics.

Theorem 1.1 Assume d = 3, and E[η4] < ∞. There are constants a0, c
±
3 such that for

a0 ≤ ξn ≤ ξn1/3, with ξ < 1

exp(−c−
3 ξ

4
5

n n
1
3 ) ≤ P (X̌n ≤ −ξnn

2/3) ≤ exp(−c+
3 ξ

4
5

n n
1
3 ). (1.5)

Moreover, we have the following description of the dominant strategy. For a constant A large
enough,

lim
n→∞P

(∣∣∣∣

{
z ∈ Z

d : ξ
6
5

n

A
≤ ln(z) ≤ Aξ

6
5

n

}∣∣∣∣ ≥ n

A4ξ
6/5
n

∥∥∥∥ X̌n ≤ −ξnn
2
3

)
= 1. (1.6)

In dimension 4 and more, there are two regimes. In the following regime, the energy has
the same behavior as in the moderate deviation regime, where the polymer is unfolded.

Theorem 1.2 Assume d ≥ 4, and E[η4] < ∞. For any ε positive, choose any sequence {ξn}
with

ξn ∈ [n1/6, n(d/2)/(d+4)−ε].
There are constants c±

d > 0, such that for n large enough

exp(−c−
d ξ 2

n ) ≤ P (X̌n ≤ −ξn

√
n) ≤ exp(−c+

d ξ 2
n ). (1.7)

Moreover, for a constant A large enough

lim
n→∞P

( ∑

z:ln(z)≥A

X̌n(z) ≤ −ξn

√
n

∥∥∥∥ X̌n ≤ −ξn

√
n

)
= 0. (1.8)

We will see when giving the heuristics, that the second regime corresponds to a partially
folded polymer.
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Theorem 1.3 Assume d ≥ 4, and n
d+2
d+4 < ξn ≤ ξn with ξ < 1. For a constant c−

d , and for
any ε > 0,

exp(−c−
d ξ

d
d+2

n ) ≤ P (X̌n ≤ −ξn) ≤ exp(−ξ
d

d+2
n n−ε). (1.9)

Note that when η ∈ {−1,1}, then Hn = X̌n. However, in general, the lower tail behavior
of Hn depends on a competition between X̌n and Yn whose upper tail behavior is given
in Remark 2.2. Note that the behaviour of Yn depends on the tail decay of the charge’s
distribution. Thus, we say that Hα holds, or simply that η ∈ Hα , when |η|α satisfies Cramer’s
condition (i.e. for some λ > 0 E[exp(λη)] < ∞). The speed of the large deviations estimates
is the following limit (when it exists)

ζ(α,β) = lim
n→∞

log(− logP (Hn ≤ −nβ))

log(n)
, (1.10)

for α > 1, and β ∈] 2
3 ,1[. A direct application of Theorems 1.1, 1.2 and 1.3, as well as of

Remark 2.2 yields the following proposition.

Proposition 1.4 Assume α > 1, and β ∈] 2
3 ,1[. When d = 3, then

ζ(α,β) = min

(
α

2
β,

4

5
β − 1

5

)
.

When d ≥ 4, then

ζ(α,β) = min

(
α

2
β,2β − 1,

d

d + 2
β

)
.

Heuristics Let us fix two lengths Tn and rn, and an energy xn, and estimate the cost of
folding Tn monomers in a ball of radius rn, say B(rn), in order to realize

∑

z∈B(rn)

ln(z)(1 − ζz(ln(z))) ≥ xn.

Note that necessarily Tn ≥ xn. Assume also that Tn � |B(rn)|, so that we expect many
monomers to pile up on each site of B(rn), and we further assume that the filling is uniform,
that is

∀z ∈ B(rn), ln(z) ≈ Tn

|B(rn)| .
Then, the optimal scenario comes up as we equate the cost of the two constrains we are
imposing. (i) We localize the walk a time Tn in a ball B(rn). This costs of the order of
exp(−κTn|B(rn)|−2/d). (ii) We require the charges to realize

{ ∑

z∈B(rn)

(1 − ζz(ln(z))) ≥ xn|B(rn)|
Tn

}
. (1.11)

Since, when we freeze the walk, the variables {1 − ζz(ln(z)), z ∈ B(rn)} are independent,
centered and with finite variance (if E[η4] < ∞), the cost of (1.11) is

P

( ∑

z∈B(rn)

(1 − ζz(ln(z))) ≥ xn|B(rn)|
Tn

)
∼ exp

(
−x2

n|B(rn)|
T 2

n

)
. (1.12)
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As we equate the two costs, we find

x2
n|B(rn)|

T 2
n

= Tn

|B(rn)|2/d
=⇒ |B(rn)| =

(
T 3

n

x2
n

) d
d+2

. (1.13)

Thus, the heuristic discussion suggests that for some constant c > 0

P (Xn ≤ −xn) ∼ exp(−cx
4

d+2
n T

d−4
d+2

n ). (1.14)

Note that the exponent d−4
d+2 of Tn in (1.14) suggests that d = 3 and d > 4 have a distinct

phenomenology. When d = 3, the lowest cost is reached when Tn = n: the polymer is en-

tirely folded in a ball of volume ( n3

x2
n
)

3
5 . Also, the sum of local charges, q̌n, over this domain

performs a moderate deviations.
When d > 4, the lowest cost is realized at the smallest possible value for Tn, that is at xn.

Since xn ≤ n, the polymer is partially folded, and (1.14) implies that the volume of the ball

is x
d

d+2
n . Also, on each site the local charge performs a typical fluctuation.

Remark 1.5 The weakness in the upper bound in (1.9) (the artifact n−ε in the exponent)
reflects a deep technical gap in estimating the distribution of the size of the level sets of the
local times of the random walk. We state it as a conjecture.

Conjecture 1.6 Assume d ≥ 3, and let {yn,n ∈ N} be a sequence going to infinity, with
y

1+d/2
n ≤ n. Then, there is κd > 0 (independent of n) such that

P0(|{z : ln(z) ≥ yn}| ≥ yd/2
n ) ≤ exp(−κdy

d/2
n ). (1.15)

One way to understand the difficulty of (1.15) is to see that the number of possible regions
of volume y

d/2
n inside [−n,n]d exceeds exp(κy

d/2
n ), for any κ > 0.

We give now an elementary application of Theorem 1.1 to the study of annealed Gibbs
measure in dimension three. For simplicity, we further assume that η ∈ {−1,1}, so that
Hn = X̌n. The annealed Gibbs measure is the following probability measure: for β > 0, we
set

dP −
n,β = exp(−βHn)dP

Z−
n (β)

where Z−
n (β) = E[exp(−βHn)]. (1.16)

The normalizing constant Z−
n (β) is called partition function. The measure P −

n,β favors con-
figurations with large values of −Hn, so that it forces local charges to neutralize. When
dealing with the Gibbs measure, one issue is to find the correct β-scaling for which a phase-
transition occurs. Indeed, an interesting biological phenomenon which motivates polymer
modelling is folding, that is the process of going from a (transient) random-walk shape to
a globular-looking shape, under the tuning of temperature, or salt-concentration. Thus, we
expect a critical parameter βc(n) (which might scale with the polymer size), such that for
β > βc(n), typical polymers are globular-like looking, whereas when β < βc(n), typical
polymers look like typical random walk trajectories.

Biskup and König [6] (see also Buffet and Pulé [7]) obtain results and some heuristics
on the annealed Gibbs measure (i.e. averaged over both randomness). They use that when
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freezing the random walk, and averaging over charges (with β > 0)

EQ[e−βHn ] = cn exp

(
−

∑

z∈Zd

V (ln(z))

)
where V (x) ∼ 1

2
log(1 + 2βx) for x large,

(1.17)
and cn is a constant. When we assume that Q(η = ±1) = 1

2 , then cn = exp(βn), and the
study [6] suggests that when performing a further random walk average

e−βnZ−
n (β) = E[e−β(Hn+n)] = exp(−βχ n

d
d+2 (logn)

2
d+2 (1 + o(1))). (1.18)

and χ > 0 is independent of β . Also, the proof of [6] suggests that, under the annealed

measure, the walk is localized a time n into a ball of volume (n/ log(n))
d

d+2 .
Our results focus on determining the correct β-scaling.

Proposition 1.7 Assume that d = 3, and Q(η = ±1) = 1
2 . The correct temperature-scaling

is 1/n2/5. More precisely, there are positive constants β1 < β2, and the following holds.
When β > β2 (the low temperature regime), then for some positive constants a, c1

exp(βn3/5) ≥ Z−
n

(
β

n2/5

)
≥ exp(c1βn3/5), (1.19)

and,

lim
n→∞P −

n,
β

n2/5

(∣∣∣∣

{
z ∈ Z

d : n
2
5

a
≤ ln(z) ≤ an

2
5

}∣∣∣∣ ≥ n3/5

a4

)
= 1. (1.20)

When β < β1 (the high temperature regime), for cd defined in (1.2),

lim
n→∞

1

n1/5
logZ−

n

(
β

n2/5

)
= cdβ

2

2
. (1.21)

Moreover, there is a positive constant b, such that

lim
n→∞P −

n,
β

n2/5
({z ∈ Z

d : ln(z) ≥ bn1/5} �= ∅) = 0. (1.22)

Remark 1.8 We emphasize that (1.22) is not the ‘correct’ result, since we expect that, in the
high temperature regime, the polymer behaves like a random walk. We conjecture that for
large b

lim
n→∞P −

n,
β

n2/5
({z ∈ Z

d : ln(z) ≥ b log(n)} �= ∅) = 0. (1.23)

We include (1.22) to show the difference with (1.20) which occurs in the low temperature
regime.

The rest of the paper is organized as follows. In Sect. 2, we recall the large deviations for
the q-norm of the local times. We divide Theorems 1.1, 1.2, and 1.3 into their upper bounds
parts, and their lower bounds parts. Upper bounds are treated in Sect. 3, while lower bounds
are treated in Sect. 4. Finally, Sect. 5 contains the proof of Proposition 1.7.
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2 Preliminaries

2.1 Sums of Independent Variables

A. Nagaev has considered in [15, 16] a sequence {Ȳn, n ∈ N} of independent centered i.i.d
satisfying Hα with 0 < α < 1, and has obtained the following upper bound (see also in-
equality (2.32) of S. Nagaev [17]).

Proposition 2.1 Assume E[Ȳi] = 0 and E[(Ȳi)
2] ≤ 1. There is a constant CY , such that for

any integer n and any positive t

P (Ȳ1 + · · · + Ȳn ≥ t) ≤ CY

(
nP

(
Ȳ1 >

t

2

)
+ exp

(
− t2

20n

))
. (2.1)

Remark 2.2 Note that if η ∈ Hα for 1 < α ≤ 2, then η2 ∈ H α
2

. Thus, for Ȳi = η(i)2 − 1,
Proposition 2.1 yields for some positive constant cα

P

(
n∑

i=1

(η(i)2 − 1) ≥ ξn

)
≤ CY

(
n exp(−cα(ξn)

α/2) + exp

(
− ξ 2

n

20n

))
. (2.2)

Finally, we specialize to our setting a general lower bound of S. Nagaev (see Theorem 1
of [18]). Let {�n, n ∈ N} a sequence of subsets of Z

d , and for each n, let {Y (n)
z , z ∈ �n} be

independent and centered random variables. Let

σ 2
n =

∑

z∈�n

E[(Y (n)
z )2], and C 3

n =
∑

z∈�n

E[|Y (n)
z |3].

Proposition 2.3 Consider a sequence {tn, n ∈ N} such that for a small enough εN > 0 and
n large enough

1 ≤ tn ≤ εN min

(
σ 3

n

C 3
n

, σn(max
z∈�n

√
E[(Y (n)

z )2])−1

)
. (2.3)

There is a positive constant κ (independent of n and εN ) such that

P

(
1

σn

∑

z∈�n

Y (n)
z ≥ tn

)
≥ exp

(
− t2

n

2
(1 + εN κ)

)
. (2.4)

2.2 On Self-intersection Local Times

In this section, we recall and establish useful estimates for functionals of the local times.
First, for any z ∈ Z

d , we estimate the variance of q2
n(z) − ln(z)

q2
n(z) − ln(z) =

( ∑

i≤ln(z)

ηz(i)

)2

− ln(z) =
∑

i≤ln(z)

(η2
z (i) − 1) + 2

∑

1≤i<j≤ln(z)

ηz(i)ηz(j), (2.5)

It is immediate to obtain, for χ1 = E[η4] + 1

2(l2
n(z) − ln(z)) ≤ EQ[(q2

n(z) − ln(z))
2] = ln(z)(EQ[η4] − 1) + 2(l2

n(z) − ln(z)) ≤ χ1l
2
n(z).

(2.6)
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Second, we summarize the asymptotic behavior of the q-norm of local times (for any real
q > 1)

‖ln‖q
q =

∑

z∈Zd

lqn (z). (2.7)

In dimension three and more, Becker and König [5] have shown that there are positive
constants, say κ(q, d), such that almost surely

lim
n→∞

‖ln‖q
q

n
= κ(q, d). (2.8)

The large deviations, and central limit theorem for ‖ln‖q are tackled in [3]: we establish
a shape transition in the walk’s strategy to realize the deviations {‖ln‖q

q − E[‖ln‖q
q ] ≥ nξ}

with ξ > 0. This transition occurs at a critical value qc(d) = d
d−2 suggesting the following

picture.

• In the super-critical regime q > qc(d), the walk performs a short-time clumping on fi-
nitely many sites.

• In the sub-critical regime q < qc(d), the walk is localized during the whole time-period

in a ball of volume n/ξ
1

q−1 where it visits each site of the order of ξ
1

q−1 -times.

We first recall Theorem 1.2 of [3] which deals with the super-critical regime.

Lemma 2.4 Assume d ≥ 3 and q > qc(d). There are constants C,c(q, d) (depending only
on d and q), such that for ξn ≥ 1, and any integer n

P0(‖ln‖q
q − E0[‖ln‖q

q] > ξnn) ≤ C exp(−c(q, d)(ξn n)
1
q ). (2.9)

Also, Lemma 1.4 of [3] estimates the cost of the contribution of low level sets to an excess
q-norm. Thus, define for x, y > 0

Dn(x, y) := {z : x < ln(z) ≤ y}.

Lemma 2.5 Assume d ≥ 3 and q ≥ qc(d). For γ ≥ 1, and χ > 0 and ε > 0, there is a
constant C such that for any sequence yn

P0

( ∑

z∈Dn(1,yn)

lqn (z) ≥ χnγ

)
≤ C exp

(
− nγ/qc(d)−ε

y
(q/qc(d)−1)
n

)
. (2.10)

When γ = 1, one needs to take χ > κ(q, d) in (2.10).

Remark 2.6 Actually Lemma 1.4 of [3] is only stated for γ > 1. An inspection of its proof,
shows that it covers also the case γ = 1 provided that χ > κ(q, d). In (2.10), we are unable
to remove the ε. This is a delicate issue which is also responsible for a gap in the exponent
of the speed in Region III of [4] (inequality (8)).

The next result deals with sub-critical regime. It follows from Theorem 1.1 and Re-
mark 1.3 of [3].
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Lemma 2.7 Assume d ≥ 3 and 1 < q < qc(d). There are constants C,c(q, d) (depending
only on d and q), such that for ξn ≥ 1, and any integer n

P0(‖ln‖q
q − E0[‖ln‖q

q] > ξnn) ≤ C exp(−c(q, d)ξ
2
d

1
q−1

n n1− 2
d ). (2.11)

Remark 2.8 For d = 3, (2.11) is mistakenly reported in [1]. Fortunately, this is of no conse-
quence since (with the notations of [1] and in the so-called Region II), we need there

2

3
(β + b) − 1

3
− ε > β − b ⇐⇒ 5

β

α + 1
> β + 1 + 3ε ⇐⇒ β >

α + 1

4 − α
.

This latter condition defines Region II.

We now state a corollary of Lemmas 2.5 and 2.7, whose immediate proof is omitted.

Corollary 2.9 Assume d ≥ 3 and ξn ≥ n
2
3 . For ε > 0 small enough, and n large enough

P0(‖ln‖2 ≥ ξnn
−ε) ≤ exp(−ξ

d
d+2

n nε). (2.12)

3 Upper Bounds

In this section, we prove the upper bounds in Theorems 1.1, 1.2, and 1.3. When dealing with
large deviations, a natural approach is to perform a Chebychev’s exponential inequality. If
we expect P (Xn ≤ −xn) ∼ exp(−ζn), then for λ > 0, and yn = xn/ζn

P (〈ln,1 − ζ.(ln)〉 ≥ xn) ≤ e−λζnE

[
exp

(
λ

〈
ln

yn

,1 − ζ.(ln)

〉)]
. (3.1)

Now, we first perform an integration over the charges. We define for x ∈ R
+ and n ∈ N

�̃(x, n) = logEQ[exp(x(1 − ζ0(n)))]. (3.2)

Since 1 − ζ0(n) ≤ 1, and since eu ≤ 1 + u + u2 when u ≤ 1, we have, for the constant χ1

which appears in (2.6),

�̃(x, n) ≤ 1{x≥1}x + 1{x<1} logEQ[1 + x(1 − ζ0(n)) + x2(1 − ζ0(n))2]
≤ 1{x≥1}x + 1{x<1} log(1 + x2var(ζ0(n)))

≤ 1{x≥1}x + 1{x<1}x2 sup
k

var(ζ0(k)) ≤ 1{x≥1}x + 1{x<1} χ1x
2. (3.3)

Remark 3.1 Note first that (3.3) implies that �̃(x, n) ≤ max(1, χ1)x
2. Secondly, the depen-

dence of �̃(x, n) on the local times has vanished in these two regimes.

Using (3.1) and (3.2), our first step is

P (〈ln,1 − ζ.(ln)〉 ≥ xn) ≤ e−λζnE0

[
exp

(∑

z∈Zd

�̃

(
λln(z)

yn

, ln(z)

))]
. (3.4)



628 A. Asselah

We introduce some notations. For 0 < x < y, and χ > 0

Dn(x, y) = {z ∈ Z
d : x < ln(z) ≤ y}, and B(x, y;χ) =

{ ∑

z∈Dn(x,y)

l2
n(z) ≥ χ

}
. (3.5)

Also, we add a handy notations: for a subset � ⊂ Z
d , Xn(�) = ∑

z∈� Xn(z).
To treat separately the contribution of the two regimes of �̃, we divide the visited sites of

the walk into Dn(1, yn), and Dn(yn, n). For x ′
n = x ′′

n = xn/2, and 0 < λ < 1, we abbreviate
B(1, yn;χynxn) by B, and we have

P (−Xn ≥ xn) ≤ P0(ln(Dn(yn, n)) ≥ x ′
n) + P (−Xn(Dn(1, yn)) ≥ x ′′

n)

≤ P0(ln(Dn(yn, n)) ≥ x ′
n) + P0(B) + P (−Xn(Dn(1, yn)) ≥ x ′′

n , Bc)

≤ P0(ln(Dn(yn, n)) ≥ x ′
n) + P0(B)

+ exp

(
−λ

x ′′
n

yn

)
E0

[
1Bc exp

(
χ1λ

2
∑

Dn(1,yn)

(
ln(z)

yn

)2)]

≤ P0(ln(Dn(yn, n)) ≥ x ′
n) + P0(B) + exp

(
−ζn

(
λ

2
− λ2χ1χ

))
. (3.6)

Note that the occurrence of an l2-norm of the local time, in B(1, yn;χ), is not arbitrary but
is a consequence of the asymptotic of the log-Laplace in (3.3).

We discuss now the respective contributions of the top level term {ln(Dn(yn, n)) ≥ x ′
n},

and of the bottom level term B(1, yn;χynxn). Note that the threshold yn defining the top
level term is determined by the log-Laplace, and may not be the value of the level set having
a dominant contribution to our large deviation.

Top Level Term First, note that for any q > 1,

{ln(Dn(yn, n)) ≥ x ′
n} ⊂

{
‖1Dn(yn,n)ln‖q

q ≥ 1

2
xny

q−1
n

}
. (3.7)

The event on the right hand side of (3.7) has a small probability if xny
q−1
n > κ(q, d)n, where

κ(q, d) is defined in (2.8).
We distinguish q < qc(d) and q > qc(d) with qc(d) = d/(d −2) (see Sect. 2.2). (i) When

q < qc(d), the so-called subcritical regime, Lemma 2.7 yields

P

(
‖1Dn(yn,n)ln‖q

q ≥ 1

2
xny

q−1
n

)
≤ exp

(
−c(q, d)

(
xn

2n
yq−1

n

) 2
d

1
(q−1)

n1/qc(d)

)
. (3.8)

Now, since xn ≤ n, the map q �→ xn

n

1
(q−1) increases on [1, qc(d)[. (ii) When q > qc(d), it

is easy to check that the upper bound given by Lemma 2.5, increases on ]qc(d),∞[, as a
function of q . Thus, the best estimates we can obtain on {ln(Dn(yn, n)) ≥ x ′

n} is with a bound
as in (3.7) right at qc(d), for which we do not have sharp estimates.

Bottom Level Term When 2 < qc(d) (that is in d = 3), we expect B(1, yn;χynxn) to be of
order {‖ln‖2

2 ≥ χynxn}, and by Lemma 2.7, we have in d = 3, for χxnyn > κ(2, d)n, that

P (B(1, yn;χynxn)) ≤ P (‖ln‖2
2 ≥ χynxn) ≤ exp(−c(2,3)(χynxn)

2/3n−1/3). (3.9)
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In this case, the cost of the bottom level set dominates the top level sets, and it is therefore
useless to consider q > 2 in (3.8), when d = 3. When qc(d) ≤ 2 (that is when d ≥ 4), and
xnyn/n → ∞, we can use Lemma 2.5, even though this is not an optimal result.

It is clear from this discussion that the behavior of the lower tail is distinct in d = 3 and
in d ≥ 4. This leads to different strategies, and different exponents. We discuss separately
the case d = 3 and the case d ≥ 4.

3.1 Dimension 3

We first make explicit the notations of (3.1)

xn = ξnn
2
3 , ζn = ξ

4
5

n n
1
3 , and yn = xn

ζn

= ξ
1
5

n n
1
3 . (3.10)

where ξn can vary in [a0, n
1
3 ], for a constant a0 to be specified later. Our first result is the

following rough upper bound.

Lemma 3.2 Assume d = 3. There are positive constants a0, c
+
3 , such that for ξn ∈ [a0, n

1
3 ]

P (−Xn ≥ ξnn
2/3) ≤ 3 exp(−c+

3 ξ
4
5

n n
1
3 ). (3.11)

Note that in Sect. 4.2, we establish a similar lower bound.

Proof of Lemma 3.2 Recall that (3.7), for q = 2, requires that xnyn > 2κ(2,3)n, which
is equivalent to ξn > a0 := (2κ(2,3))5/6. Recall that (3.9) requires that χxnyn > κ(2,3)n,
which is equivalent to χξ

6/5
n > κ(2,3), which in turn requires that χ > 1/2. Combining

inequalities (3.6), (3.7) with q = 2, and (3.9), we obtain for 0 ≤ λ ≤ 1

P (−Xn ≥ ξnn
2/3)

≤ exp

(
−c(2,3)

22/3
ζn

)
+ exp(−c(2,3)χ2/3ζn) + exp

(
−

(
λ

2
− λ2χ1χ

)
ζn

)
. (3.12)

We choose χ = 1/4, and λ = min(1/χ1,1) in (3.9) to obtain the desired result. �

3.1.1 Upper Bound in Theorem 1.1: xn = ξnn
2/3 < n

We show in this section that the dominant level set of the local times is of order ξ
6
5

n much
smaller than yn when xn is much smaller than n. We actually consider xn < a1n with a1

to be chosen later small. For a large constant a > 0, to be chosen later, we decompose
{z : ln(z) > 0} into D1 ∪ · · · ∪ D4 with

D1 = Dn

(
1,

1

a
ξ

6
5

n

)
, D2 = Dn

(
1

a
ξ

6
5

n , aξ
6
5

n

)
,

D3 = Dn

(
aξ

6
5

n ,
yn

a

)
, and D4 = Dn

(
yn

a
,n

)
.

(3.13)

We then write

P (−Xn ≥ ξnn
2
3 ) ≤

∑

i �=2

P

(
−Xn(Di ) ≥ 1

4
ξnn

2
3

)
+ P

(
−Xn ≥ ξnn

2
3 ,−Xn(D2) ≥ 1

4
ξnn

2
3

)
.

(3.14)
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We now show that the contribution of D2 is the dominant one.
(a) Contribution of D1.

We use Chebychev’s inequality with λ > 0,

P

(
−Xn(D1) ≥ 1

4
ξnn

2/3

)
≤ e− λ

4 ζnE0

[ ∏

z∈D1

exp

(
�̃

(
λln(z)

yn

, ln(z)

))]
. (3.15)

Now, to justify the expansion of �̃ at 0, we need λξ
6/5
n ≤ ayn which is equivalent to λξn ≤

an1/3. Assume that this latter fact holds. We have by (3.3)

P

(
−Xn(D1) ≥ 1

4
ξnn

2/3

)
≤ exp

(
−λ

4
ζn + χ1λ

2
∑

z∈D1

l2
n(z)

y2
n

)
. (3.16)

It will be convenient to define χ2 = max(χ1,
1
8 ). We now use that ln(D1) ≤ n, so that

∑

z∈D1

l2
n(z)

y2
n

≤ ξ
6/5
n

ay2
n

ln(D1) ≤ ξ
6/5
n n

ay2
n

= ζn

a
. (3.17)

We choose λ = a/(8χ2) ≤ an1/3/ξn , and use (3.17) in (3.16)

P

(
−Xn(D1) ≥ 1

4
ξnn

2/3

)
≤ exp

(
− a

82χ2
ζn

)
. (3.18)

(b) Contribution of D3.
For 0 ≤ λ ≤ a, and χ to be chosen later, we have

P

(
−Xn(D3) ≥ 1

4
ξnn

2/3

)
≤ P (B(aξ 6/5

n , yn;χxnyn))

+ e− λ
4 ζnE0

[
1B(.)c exp

(
χ1λ

2
∑

z∈D3

l2
n(z)

y2
n

)]

≤ P (B(aξ 6/5
n , yn;χxnyn)) + exp

(
−

(
λ

4
− χ1λ

2χ

)
ζn

)
. (3.19)

Choose 2 < q < qc(3) = 3, and by Lemma 2.7

P (B(aξ 6/5
n , yn;χxnyn)) ≤ P (‖ln‖q

q ≥ (aξ 6/5
n )q−2χxnyn) = P (‖ln‖q

q ≥ aq−2ξ 6/5(q−1)
n χn)

≤ exp(−c(q,3)(aq−2χξ
6
5 (q−1)

n )
2

3(q−1) n1/3)

≤ exp(−c(q,3)(aq−2χ)
2

3(q−1) ζn) (3.20)

Now, collecting (3.19) and (3.20), we choose χ = a1−q/2 and for a4−q > (8χ1)
−2 we have

that the optimal λ in (3.19) satisfies λ ≤ a, and

P

(
−Xn(D3) ≥ 1

4
ξnn

2/3

)
≤ exp(−c(q,3)(aq−2χ)

2
3(q−1) ζn) + exp

(
−

(
λ

4
− χ1λ

2χ

)
ζn

)

≤ exp(−c(q,3)a
q−2

3(q−1) ζn) + exp

(
− 1

82χ1
aq/2−1ζn

)
(3.21)
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(c) Contribution of D4.
We proceed as in (3.7) and (3.8).

P

(
−Xn(D4) ≥ 1

4
ξnn

2/3

)
≤ P

(
ln(D4) ≥ 1

4
ξnn

2/3

)
≤ P

(
‖ln‖q

q ≥ 1

4
ξn

(
yn

a

)q−1

n2/3

)

≤ exp

(
−c(q,3)

(
ξn

4n1/3

(
yn

a

)q−1) 2
3(q−1)

n1/3

)
. (3.22)

Now, for A > 0, and 2 < q < 3,

1

a2/3
(ξny

q−1
n )

2
3(q−1) n

1
3 (1− 2

3(q−1)) ≥ Aξ 4/5
n n1/3 ⇐⇒ ξn(aA3/2)

(q−1)
(q−2) ≤ n1/3. (3.23)

Our assumption is that ξn < a1n
1/3, and this implies that

P

(
−Xn(D4) ≥ 1

4
ξnn

2/3

)
≤ exp

(
−c(q,3)

ζn

a
γ

1 a2/3

)
, with γ = 2(q − 2)

3(q − 1)
> 0. (3.24)

(d) Contribution of D2.
We recall the rough lower bound P (−Xn ≥ ξnn

2
3 ) ≥ exp(−c−

3 ζn), and express (3.14) as

P (−Xn ≥ ξnn
2
3 ) ≤

∑

i �=2

P

(
−Xn(Di ) ≥ 1

4
ξnn

2
3

)
+ P

(
−Xn ≥ ξnn

2
3 ,−Xn(D2) ≥ 1

4
ξnn

2
3

)
.

(3.25)
When a is large enough in (3.18) and (3.21), and a1 small enough in (3.24), the terms with
D1 and D3 are negligible. We then write

{
−Xn(D2) ≥ 1

4
ξnn

2
3

}
⊂

{
|D2| ≥ n

a4ξ
6/5
n

}
∪

{∑

D2

(1−ζz(ln(z))) ≥ n
2
3

4aξ
1/5
n

, |D2| ≤ n

a4ξ
6/5
n

}
.

(3.26)
Now, for dealing with the last event in (3.26), note that

{∑

D2

(1−ζz(ln(z))) ≥ n
2
3

4aξ
1/5
n

, |D2| ≤ n

a4ξ
6/5
n

}
⊂

{
1√|D2|

∑

D2

(1−ζz(ln(z))) ≥ aξ
2/5
n n1/6

4

}
.

(3.27)
Now, we fix the randomness of the walk, and use that 1 − ζz ≤ 1, EQ[1 − ζz] = 0 and
EQ[(1 − ζz)

2] ≤ χ1 to obtain that (recall that ζn = ξ
4/5
n n1/3)

P

(
1√|D2|

∑

D2

(1 − ζz(ln(z))) ≥ aξ
2/5
n n1/6

4

)
≤ exp

(
−a2ζn

4

)
. (3.28)

We put together (3.25), (3.26) and (3.28) to obtain for a large enough

lim
n→∞P

(
|D2| ≥ n

a4ξ
6/5
n

∥∥∥∥ − Xn ≥ ξnn
2
3

)
= 1. (3.29)
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3.1.2 Upper Bound in Theorem 1.1: xn = ξn with 1 > ξ > a1

Note that

ξn = ξn1/3, ζn = ξ 4/5n3/5, and yn = ξ 1/5n2/5.

Note that ξ
6/5
n = ξyn < yn. For a large constant b > 0, to be chosen later, we decompose

{z : ln(z) > 0} into D1 ∪ · · · ∪ D3 with

D1 = Dn

(
1,

1

b
ξ

6
5 n2/5

)
, D2 = Dn

(
1

b
ξ

6
5 n2/5, bξ

1
5 n2/5

)
, and D3 = Dn(byn, n).

(3.30)
We then write

P (−Xn ≥ ξn) ≤
∑

i �=2

P

(
−Xn(Di ) ≥ 1

4
ξn

)
+ P

(
−Xn(D2) ≥ 1

2
ξn,−Xn ≥ ξn

)
, (3.31)

and we show that the contribution of D2 is the dominant one.
The treatment of D1 is similar to the previous case (a). The choice λ = b/(8χ2) requires

ξ ≤ 8χ2, which holds since ξ < 1 ≤ 8χ2.
Then, for D3, we write

P

(
−Xn(D3) ≥ 1

4
ξn

)
≤ P

(
ln(D3) ≥ 1

4
ξn

)
≤ P

(
‖ln‖2

2 ≥ 1

4
bξ 6/5n2/5n

)

≤ exp

(
−c(2,3)

(
b

4

)2/3

ζn

)
. (3.32)

By taking b large enough, and proceeding as in the previous case (d), we reach that for ξ < 1

lim
n→∞P

(
|D2| ≥ ξ 4/5n3/5

b

∥∥∥∥ Xn ≤ −ξn

)
= 1. (3.33)

3.2 Dimension 4 or More

We choose here xn, yn and ζn as follows.

xn = ξn

√
n, ζn = ξ 2

n , and yn =
√

n

ξn

. (3.34)

We first deal with the case a0n
1/6 ≤ ξn � nγd−ε , with γd = (d/2)/(d +4), and any ε positive.

3.2.1 Proof of the Upper Bound in (1.7)

Our starting point is the inequality (3.6) with xn, yn, ζn as in (3.34). We deal with each term
on the right hand side of (3.6).

First, choose χ > κ(2, d), and Lemma 2.5 gives

P (B(1, yn;χxnyn)) = P0

( ∑

z∈Dn(1,yn)

l2
n(z) ≥ χn

)
≤ exp

(
− n1/qc(d)−ε

y
(2/qc(d)−1)
n

)
. (3.35)
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Second, n1/qc(d)−ε ≥ y
(2/qc(d)−1)
n ξ 2

n is equivalent to asking ξ
1+4/d
n ≤ n1/2−ε , which is exactly

the condition which defines this regime.
Now, we deal with the event {ln(Dn(yn, n)) ≥ xn/2}. The proof of Proposition 3.3 of [4]

yields

P (ln(Dn(yn, n)) ≥ xn/2) ≤ exp(−x1/qc(d)
n y2/d

n ), (3.36)

provided that for some fixed a and n large

y
1+ 2

d
n ≥ loga(n)x2/d

n . (3.37)

Now both x
1/qc(d)
n y

2/d
n � ξ 2

n and condition (3.37) follow from log ξn ≤ (d/2 − ε)/(d +
4) log(n). Thus, for any ε > 0, there is ε′ > 0 such that

P (ln(Dn(yn, n)) ≥ xn/2) ≤ exp(−nε′
ξ 2
n ). (3.38)

A bound of the type P (−Xn ≥ xn) ≤ exp(−cξ 2
n ) now follows from (3.35), and (3.36) after

we choose λ small enough in the last term of the right hand side of (3.6).

3.2.2 Proof of (1.8)

We fix A large constant, and take the subdivision {b1, . . . , bM} of [A,yn[ with b1 = A,
bi+1 = 2bi , for i = 1, . . . ,M − 1, with M of order log(n). We will choose q slightly larger
than 2, to be in the super-critical regime (when d ≥ 4), and we define

Gi =
{
|Dn(bi, bi+1)| < C1n

b
q

i+1

}
. (3.39)

Finally, for q > 2, choose pi = p2−i(q−2)/2 where p is such that
∑

i pi = 1. Now,

P

(∑

i

∑

z∈Dn(bi ,bi+1)

ln(z)(1 − ζz(ln(z))) ≥ xn

)

≤ P (∪i Gc
i ) +

∑

i

P

( ∑

z∈Dn(bi ,bi+1)

ln(z)

bi+1
(1 − ζz(ln(z))) ≥ xn

bi+1
, Gi

)
. (3.40)

First, we deal with P (
⋃

i Gc
i ) in the right hand side of (3.40). Note that

⋃

i

Gc
i ⊂

{
‖1Dn(A,yn)ln‖q

q ≥ C1

2q
n

}
. (3.41)

We choose C1 = 2q+1κ(q, d), and use Lemma 2.5 to obtain, for any ε ′ > 0,

P

(⋃

i

Gc
i

)
≤ exp

(
−n1/qc(d)−ε′

y
q/qc(d)−1
n

)
. (3.42)

We neglect P (∪Gc
i ) if n1/qc(d)−ε′ ≥ y

q/qc(d)−1
n ξ 2

n . Since log(ξn) ≤ (d/2 − ε)/(d + 4) log(n),
and we are interested in q close to 2, we only need to check that taking q = 2, for any ε > 0,
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we can find ε ′ > 0 such that

1

qc(d)
− 1

2

(
2

qc(d)
−1

)
− ε ′ ≥

(
2−

(
2

qc(d)
−1

))(
d/2 − ε

d + 4

)
⇐⇒ 1

2
− ε ′ ≥ 1

2
− ε

d
.

(3.43)
Since (3.43) holds, we can find δ > 0 small enough, and q = 2 + δ so that P (∪Gc

i ) is negli-
gible.

We fix a realization of the random walk and integrate first with respect to charges. For
the charges, we use the Gaussian bounds of Remark 3.1 which states that �̃(x, n) ≤ χ̄1x

2,
where χ̄1 = max(1, χ1). In other words, on the event Gi = {|Dn(bi, bi+1)| ≤ C1n/b

q

i+1}, we
use

Q

(
M∑

i=1

∑

z∈Dn(bi ,bi+1)

ln(z)(1 − ζz(ln(z))) >
∑

i

pixn

)

≤
M∑

i=1

Q

( ∑

z∈Dn(bi ,bi+1)

ln(z)

bi+1
(1 − ζz(ln(z))) >

pi

bi+1
xn

)
. (3.44)

Now, we consider a fixed i ∈ {1, . . . ,M}, and on Gi , we have for any θ > 0

Q

( ∑

z∈Dn(bi ,bi+1)

ln(z)

bi+1
(1 − ζz(ln(z))) >

pi

bi+1
xn

)
≤ exp

(
−pixnθ

bi+1
+ χ̄1|Dn(bi, bi+1)|θ2

)

≤ exp

(
−pixnθ

bi+1
+ χ̄1C1

n

b
q

i+1

θ2

)
. (3.45)

Note that if |Dn(bi, bi+1)| ≤ pixn/bi+1, then the left hand side of (3.45) vanishes. Therefore,
we assume that |Dn(bi, bi+1)| > pixn/bi+1, so that the θ which minimizes the right hand
side of (3.45) is lower than 1, and we obtain

P

( ∑

z∈Dn(bi ,bi+1)

ln(z)

bi+1
(1 − ζz(ln(z))) >

pi

bi+1
xn, Gi

)
≤ exp

(
−p2

i b
q−2
i+1 ξ 2

n

4C1

)
. (3.46)

With our choice of pi, bi , we have that p2
i b

q−2
i+1 ≥ p2Aq−2. Combining (3.44) and (3.46), we

have

P

(∑

z∈Zd

ln(z)(1 − ζz(ln(z))) ≥ xn/2

)
≤ M exp

(
−p2Aq−2ξ 2

n

4C1

)
. (3.47)

The bound (1.8) follows from (3.38) and (3.47).

3.2.3 Dimension d ≥ 4, and n
d+2
d+4 < ξn < ξn with ξ < 1

This corresponds to Region III of [4]. We set xn = ξn, ζn = ξ
d

d+2
n , and yn = ξn/ζn. Instead of

(3.6), we use

P (−Xn ≥ ξn) ≤ P0

(
ln(Dn(y

1+ε
n , n)) ≥ ξn

2

)

+ P0(‖1Dn(1,y1+ε
n )

ln‖2
2 ≥ ynξn) + exp(−ζny

−ε
n (λξ2 − λ2χ1)). (3.48)
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Proposition 3.3 of [4] yields that there is ε ′ > 0 such that

P0

(
ln(Dn(y

1+ε
n , n)) ≥ ξn

2

)
≤ exp(−ξ

d
d+2 −ε′

n ). (3.49)

Now ζ
d+4
d+2

n ≥ n, and by Lemma 2.5, for any ε

P0

( ∑

z∈Dn(1,y1+ε
n )

l2
n(z) ≥ ξ

d+4
d+2

n

)
≤ exp

(
−ξ

( d+4
d+2 )( 1

qc(d)
−ε)

n

y
( 2
qc(d)

−1)

n

)
. (3.50)

The upper bound in (1.9) follows from (3.48), (3.50), and (3.49).

4 Lower Bounds

In realizing the lower bounds for Theorems 1.1, 1.2, and 1.3, two strategies of the walk are
distinguished: (i) the walk is localized a time Tn into a ball of radius rn with r2

n � Tn, (ii) the
walk roams freely.

4.1 On Localizing the Walk

We introduce two sequences {Tn, rn, n ∈ N}. We force the random walk to spend a time Tn

in the ball centered at 0, of radius rn, that we denote B(rn).
If τn = inf{n ≥ 0 : S(n) �∈ B(rn)}, it is well known (see Lemma 5.1 of Donsker and Varad-

han [12]) that for some constant c0

P0(τn > Tn) ≥ exp

(
−c0

Tn

|B(rn)|2/d

)
. (4.1)

Once the walk is forced to stay inside B(rn), we turn to estimating the cost of {Xn < −xn}.
We then choose {Tn, rn} so as to match the cost with (4.1).

First, we need some relation between being localized a time Tn in a ball B(rn), and visit-
ing enough sites of B(rn) a time of order Tn/|B(rn)|. We have shown in [1] Proposition 1.4,
that in d = 3, for sequences {rn, Tn} going to infinity with rd

n ≤ KTn, for some constant K ,
there are positive constants δ0 and ε0, independent of rn, Tn such that, for n large enough

P0

(∣∣∣∣

{
z : lTn (z) > δ0

Tn

|B(rn)|
}∣∣∣∣ ≥ ε0|B(rn)|

)
≥ 1

2
P0(τn > Tn). (4.2)

Let Rn be the set of sites visited by the random walk before time n. The only fact used in
proving (4.2) is an asymptotical bound on P0(|Rn| < n/ξ) for a fixed large ξ and n going to
infinity. Now, there is an obvious relation between |Rn| and ‖ln‖q which reads as follows.
For q > 1

(
n

|Rn|
)q−1

≤ ‖ln‖q
q

n
. (4.3)

Thus, from (4.3) and [3] Theorem 1.1, we have for ξq−1 > κ(q, d), and q < qc(d)

P0

(
|Rn| < n

ξ

)
≤ P0(‖ln‖q

q ≥ ξq−1n) ≤ exp(−c+
1 ξ

2
d n1− 2

d ). (4.4)



636 A. Asselah

Since qc(d) = d
d−2 > 1, as soon as d ≥ 3, (4.4) is sufficient to obtain (4.2) by following the

proof of [1], and we omit the details. We now focus on the following set of sites

Gn =
{
z : δ0

Tn

|B(rn)| ≤ lTn (z) ≤ 2Tn

ε0|B(rn)|
}
. (4.5)

Note that
∣∣∣∣

{
z : lTn (z) >

2Tn

ε0|B(rn)|
}∣∣∣∣ ≤ ε0

2
|B(rn)|,

so that {lTn > δ0Tn/|B(rn)|} = Gn ∪ {lTn > 2Tn/(ε0|B(rn)|)}, and

P0

(
|Gn| ≥ ε0

2
|B(rn)|

)
≥ P0

(∣∣∣∣

{
z : lTn (z) > δ0

Tn

|B(rn)|
}∣∣∣∣ ≥ ε0|B(rn)|

)
. (4.6)

Now, in the scenario we are adopting, it will be easy to estimate the contribution of sites
of Gn, which is a random set. To use the notations of Proposition 2.3, we define for z ∈ Z

d ,
Y (n)

z = ln(z)(1 − ζz(ln(z))). We have, for δ > 0 small

{∑

z∈Zd

Y (n)
z ≥ xn

}
⊃

{∑

z∈Gn

Y (n)
z ≥ (1 + δ)xn

}
∩

{∑

z �∈Gn

Y (n)
z ≥ −δxn

}
. (4.7)

When we integrate (4.7) over the charges, we use the fact that charges over disjoint regions
are independent. Thus, we fix a realization of the walk, and

Q

(∑

z∈Zd

Y (n)
z ≥ xn

)
≥ Q

(∑

z∈Gn

Y (n)
z ≥ (1 + δ)xn

)
Q

(∑

z/∈Gn

Y (n)
z ≥ −δxn

)
. (4.8)

We first deal with the charges in Gc
n. We show using (2.6) that on Bn = {‖ln‖2 ≤ xnn

−ε′ }, for
ε ′ small, then

1BnQ

(∑

z/∈Gn

Y (n)
z ≤ −δxn

)
≤ 1Bn

∑
z∈Zd E[(Y (n)

z )2]
(δxn)2

≤ 1Bn

χ1
∑

z∈Zd l2
n(z)

(δxn)2
≤ 1Bn

χ1

δ2n2ε′ . (4.9)

Thus, from (4.9) with n large, we have

1BnQ

(∑

z �∈Gn

Y (n)
z ≥ −δxn

)
≥ 1Bn

2
(4.10)

From (4.7) and (4.10), we obtain, when integrating only over the charges

1BnQ

(∑

z∈Zd

Y (n)
z ≥ xn

)
≥ 1Bn

2
Q

(∑

z∈Gn

Y (n)
z ≥ (1 + δ)xn

)
. (4.11)

Thus, after integrating over the walk

2P

(∑

z∈Zd

Y (n)
z ≥ xn

)
+ P0(Bc

n) ≥ P

(∑

z∈Gn

Y (n)
z ≥ (1 + δ)xn

)
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≥ P

(
|Gn| ≥ ε0

2
|B(rn)|,

∑

z∈Gn

Y (n)
z ≥ (1 + δ)xn

)
. (4.12)

Assume for a moment that P0(Bc
n) were negligible. When integrating only over charges

the last term of (4.12), we invoke Nagaev’s Proposition 2.3, applied to {Y (n)
z , z ∈ Gn}. To

simplify notations, we assume henceforth that Tn = n (though we can force the transient
walk never to return to Gn after time Tn, so that for z ∈ Gn we would have ln(z) = lTn (z)).
Now, when we fix a realization of the walk, we have easily from the equality (2.6), for
constants χ1 and χ4

χ1l
2
n(z) ≥ EQ[(Y (n)

z )2] ≥ 2(l2
n(z) − ln(z)) and EQ[(Y (n)

z )4] ≤ χ4l
4
n(z). (4.13)

From Jensen’s inequality, we have EQ[|Y (n)
z |3] ≤ χ3l

3
n(z) with ξ3 = ξ

3/4
4 . Note that in order

to have a non-zero lower bound for the variance of Y (n)
z , we impose

δ0
Tn

|B(rn)| ≥ 2 so that ∀z ∈ Gn,EQ[Y 2
z ] ≥ 2(l2

n(z) − ln(z)) ≥ l2
n(z). (4.14)

With the notations of Proposition 2.3, we have (using (4.13)) on {|Gn| ≥ ε0
2 |B(rn)|}

ε0δ
2
0

2

T 2
n

|B(rn)| ≤ σ 2
n ≤ 4χ1

δ0ε
2
0

T 2
n

|B(rn)| and C 3
n ≤ 8χ3

δ0ε
3
0

T 3
n

|B(rn)|2 . (4.15)

Also, σntn = (1 + δ)xn, so that (2.3) holds if for some εN > 0, and n large enough

σn ≤ (1 + δ)xn, (1 + δ)xnC 3
n ≤ εN σ 4

n , and (1 + δ)xn max
z∈Gn

√
E[(Y (n)

z )2] ≤ εN σ 2
n .

(4.16)
Using (4.15), (4.16) and (4.14) follow if, for some constant c1

4χ1

δ0ε
2
0

T 2
n

|B(rn)| ≤ x2
n, and xn ≤ εN c1Tn. (4.17)

When (4.17) holds, and we can use Proposition 2.3, to obtain on {|Gn| ≥ ε0
2 |B(rn)|}, and for

constants c1, c2

Q

(∑

z∈Gn

Y (n)
z ≥ (1 + δ)xn

)
≥ exp

(
−c1

(
xn

σn

)2)
≥ exp

(
−c2

x2
n |B(rn)|

T 2
n

)
. (4.18)

After integrating over the walk, recalling (4.2), (4.1), (4.12) and (4.6), we have

2P

(∑

z∈Zd

Y (n)
z ≥ xn

)
≥ P

(
|Gn| ≥ ε0

2
|B(rn)|,

∑

z∈Gn

Y (n)
z ≥ (1 + δ)xn

)
− P0(Bc

n)

≥ exp

(
−c2

x2
n |B(rn)|

T 2
n

− c0
Tn

|B(rn)|2/d

)
− P0(||ln||22 ≥ x2

nn
−2ε′

).

(4.19)
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From inequality (4.19), the difference between d = 3 and d ≥ 4 is obvious, when imposing
a localization of the walk. Indeed, matching the two costs in (4.19), we find

x2
n|B(rn)|

T 2
n

= Tn

|B(rn)|2/d
=⇒ |B(rn)| d+2

d = T 3
n

x2
n

. (4.20)

Thus, combining (4.19) with the choice of (4.20), we obtain for a constant c−
d > 0

P (Xn ≤ −xn) ≥ exp(−c−
d x

4
d+2
n T

d−4
d+2

n ) − P0(Bc
n). (4.21)

Corollary 2.9 shows that P0(Bc
n) � exp(−c−

d ξ
d

d+2
n ). Henceforth, we neglect P0(Bc

n).

4.2 The Case d = 3 and a0 ≤ ξn ≤ ξn1/3 with ξ < 1

In this section, we choose Tn = n, and |B(rn)|5/3 = n3/x2
n , as suggested in (4.20).

We start with ξn ≤ c1εN n1/3. In this case, xn = ξnn
2/3. The discussion of the previous

section applies here. Note that sites of Gn are visited about ξ
6/5
n -times each. Conditions (4.17)

are satisfied, and the discussion following it holds. The bound (4.21) provides the desired
lower bound.

Now, we deal with xn = ξn, with 1 > ξ ≥ c1εN . The second inequality in (4.17) fails, and
Nagaev’s lower bound cannot be applied. We choose δ > 0 small enough so that ξ(1+ δ)2 <

1, and we consider the event A = {∀z ∈ B(rn), (1 − ζz) ≥ ξ(1 + δ)2} ∩ {τn > n}. Note that

A ⊂
{∑

z∈Zd

ln(z)(1 − ζz(ln(z)) ≥ ξ(1 + δ)2n

}
.

However, there might be some sites of B(rn) that the walk visits once, and if η ∈ {−1,1},
we will have on this sites that ζz(ln(z)) = 0. We will restrict to sites of B(rn) visited often.
Note that, for α(ξ) > 0,

lim
n→∞Q(1 − ζz(n) ≥ ξ(1 + δ)2) = lim

n→∞Q

((
1√
n

n∑

i=1

ηz(i)

)2

≤ 1 − ξ(1 + δ)2

)
= α(ξ).

Thus, there is n1 (depending on ξ and δ) such that for n ≥ n1

Q

((
1√
n

n∑

i=1

ηz(i)

)2

≤ 1 − ξ(1 + δ)

)
≥ 1

2
α(ξ).

Now, with n1 fixed, we define a set

Gn = {z ∈ B(rn) : ln(z) ≥ n1}.
On the event {τn > n}, we have for n large enough (using that |B(rn)| � n)

ln(Gc
n) ≤ |B(rn)|n1 =⇒ ln(Gn) ≥ n − |B(rn)|n1 ≥ n

1 + δ
.

Thus,

A ⊂
{∑

z∈Gn

ln(z)(1 − ζz(ln(z)) ≥ ln(Gn)ξ(1 + δ)2 = ξ(1 + δ)n

}
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Using (4.12) (with δ occurring in (4.12)), we have

2P

(∑

z∈Zd

Yz ≥ ξn

)
+ P0(Bc

n) ≥
(

α(ξ)

2

)|B(rn)|
× P0(τn > n)

≥
(

α(ξ)

2

)|B(rn)|
× exp

(
−c0

n

|B(rn)|2/d

)
. (4.22)

Since 1 > ξ > c1εN , the power of ξ appearing in (4.22) is irrelevant. We only need to check
that the speed exponent is correct in (4.22)

4.3 The Case d ≥ 4 and n
d+2
d+4 � ξn ≤ ε0

4 n (ε0 Defined Before (4.2))

Here xn = ξn. Assume that we localize the walk a time Tn inside B(rn). We make use of
Sect. 4.1 until the point where we assumed Tn = n (that is a paragraph before (4.13)). If
we were allowed to identify the two costs in (4.19), we would find here Tn = xn = ξn,
and |B(rn)| = ξ

ζd
n , with ζd = d

d+2 . Note that in dimension 4 or larger, with Tn of order ξn,

we are not entitled to use Nagaev’s lower bound. On the other hand, |B(rn)| = ξ
ζd
n , is the

expected speed, so that constraining the local charges on Gn would yield the correct cost.
We observe that we are entitled to use the CLT for ζz(ln(z)), for each sites in Gn, since
ln(z) ≥ lTn (z) ≥ ξ

1−ζd
n . With the notation Z for a standard Gaussian variable, and n large

enough, we have for z ∈ Gn, and uniformly over ln(z)

α0 := 1

2
P

(
Z2 <

1

2

)
≤ Q

(
ζz(ln(z)) <

1

2

)
.

With the choice Tn = 4
ε0

ξn (note that Tn ≤ n), recalling the definition of Gn in (4.5), and
using that ln(z) ≥ lTn (z)

{
∀z ∈ Gn, ζz(ln(z)) <

1

2

}
∩

{
|Gn| ≥ ε0

2
|B(rn)|

}
⊂

{∑

z∈Gn

Yz ≥ 1

2
|Gn|Tn = (1 + δ)ξn

}
.

Thus, using (4.12)

2P

(∑

z∈Zd

Yz ≥ ξn

)
+ P0(Bc

n) ≥ α
|B(rn)|
0 × P0(τn > Tn) ≥ exp(−c−

d ξ ζd
n ). (4.23)

4.4 The Case d ≥ 4 and ξn = ξn with ε0
4 < ξ < 1

We set here xn = ξn. We assume that ξ < 1, for δ′ > 0 so small that (1 + δ′)ξ < 1, we
choose Tn = (1 + δ′)ξn and |B(rn)| = (ξn)d/(d+2). We force the local charges to realize
1 − ζz(ln(z)) ≥ 1 − δ′

4 for δ′ arbitrarily small. Note that for α1 > 0,

lim
n→∞Q

((
1√
n

n∑

i=1

ηz(i)

)2

≤ δ′

4

)
= α1.

Thus, there is n1 (depending on ξ and δ′) such that for n ≥ n1

Q

((
1√
n

n∑

i=1

ηz(i)

)2

≤ δ′

4

)
≥ 1

2
α1. (4.24)
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Now, using n1, we define a set

Gn = {z ∈ B(rn) : ln(z) ≥ n1}.

On the event {τn > (1 + δ′)ξn}, we have for n large enough (using that |B(rn)| � n)

ln(Gc
n) ≤ |B(rn)|n1 =⇒ ln(Gn) ≥ (1 + δ′)ξn − |B(rn)|n1 ≥ (1 + δ′)

(
1 − δ′

4

)
nξ.

We use (4.24) for ζz(ln(z)), with z ∈ Gn. Thus, on {τn ≥ (1 + δ′)ξn},

{∀z ∈ Gn, ζz(ln(z)) < δ′} ⊂
{∑

z∈Gn

Yz ≥
(

1 − δ′

4

)
ln(Gn) ≥ (1 + δ′)

(
1 − δ′

4

)2

nξ

}
.

Now, we choose δ′ so small that (1 + δ′)(1 − δ′
4 )2 ≥ 1 + δ, for δ occurring in (4.12). Thus,

using (4.12)

2P

(∑

z∈Zd

Yz ≥ ξn

)
+ P0(Bc

n) ≥
(

α1

2

)|B(rn)|
× P0(τn > Tn)

≥
(

α1

2

)|B(rn)|
× exp

(
−c0

(1 + δ′)ξn

|B(rn)|2/d

)

≥ exp(−c−
d (ξn)

d
d+2 ). (4.25)

This yields the desired bound.

4.5 The Case d ≥ 4 and n2/3 � ξn � n(d+2)/(d+4)

The strategy in this region (region I of [4]) consists in letting the walk roam freely, while the
local charges perform a moderate deviations. Note that our scenery ζz depends on the local
times, and on sites visited only once by the walk, Yz may vanish by (2.6), as in the model
where η ∈ {−1,1}. Thus, we only consider sites where {z : ln(z) = 2}, since 1

2 (η1 + η2)
2 − 1

is not degenerate. Also, a transient random walk has enough sites of this type. Indeed, Becker
and König in [5] have shown that, in d ≥ 3 with Dn(k) = {z : ln(z) = k} for any positive
integer k, we have

lim
n→∞

E[|Dn(k)|]
n

= γ 2
0 (1 − γ0)

k−1, where γ0 = P0(S(k) �= 0, ∀k > 0). (4.26)

We choose a scenario based only on Dn(2). Note that for n large enough, the fact that
|Dn(2)| ≤ n, and (4.26) imply that

1

2
γ 2

0 (1 − γ0) ≤ E[|Dn(2)|]
n

≤ P0

( |Dn(2)|
n

≥ 1

4
γ 2

0 (1 − γ0)

)
+ 1

4
γ 2

0 (1 − γ0).

Thus,

P0

( |Dn(2)|
n

≥ γ1

)
≥ γ1 with γ1 = 1

4
γ 2

0 (1 − γ0). (4.27)
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Now, we consider the following decomposition, for δ > 0 small (recall that here xn = √
nξn)

{∑

z∈Zd

Y (n)
z ≥ √

nξn

}
⊃

{ ∑

z∈Dn(2)

Y (n)
z ≥ (1 + δ)

√
nξn

}
∩

{ ∑

z/∈Dn(2)

Y (n)
z ≥ −δ

√
nξn

}
. (4.28)

We treat the second event on the right hand side of (4.28) as in Sect. 4.1: we restrict to Bn

(where P (Bc
n) is negligible by Corollary 2.9), and we use Markov’s inequality.

Now, fixing a realization of the walk, {Yz, z ∈ Dn(2)} are centered i.i.d with E[Y 2
z ] =

2(EQ[η4] + 1), and on {|Dn(2)| > γ1n}, then {∑Dn(2) Yz ≥ (1 + δ)
√

n ξn} is a moderate
deviations. Thus, there is a constant c, such that on the event {|Dn(2)| > γ1n}, and for n

large

Q

( ∑

Dn(2)

Yz ≥ (1 + δ)
√

nξn

)
≥ c exp

(
− ((1 + δ)ξn)

2n

2|Dn(2)|(EQ[η4] + 1)

)

≥ c exp

(
− (1 + δ)2ξ 2

n

2γ1(EQ[η4] + 1)

)
. (4.29)

After integrating (4.29) the walk’s law, we have

P

(
|Dn(2)| > γ1n,

∑

Dn(2)

Yz ≥ (1 + δ)
√

n ξn

)
≥ cγ1 exp

(
− (1 + δ)2

2γ1(EQ[η4] + 1)
ξ 2
n

)
. (4.30)

5 Proof of Proposition 1.7

Large β First, Hn ≥ −n implies the upper bound in (1.19). The lower bound in (1.19)
follows from the lower bound in (1.5) with ξn = ξn1/3, and the following inequalities: for
ξ < 1

Z−
n

(
β

n2/5

)
= E

[
exp

(
−β

Hn

n2/5

)]
≥ P (Hn ≤ −ξn)eβξn3/5

≥ exp(n3/5(βξ − c−
3 ξ 4/5)). (5.1)

For any fixed ξ < 1, we choose β large enough so that the lower bound in (1.19) holds.
Now, define

An(a) =
{∣∣∣∣

{
z ∈ Z

d : n
2
5

a
≤ ln(z) ≤ an

2
5

}∣∣∣∣ ≥ n3/5

a4

}
.

Using the estimates of Sect. 3.1.2, we have for χ > 0

E

[
exp

(
−β

Hn

n2/5

)]
≤ eβn3/5

P (Ac
n(a)) ≤ en3/5(β−χa2/3). (5.2)

Choosing a large enough so that 2β < χa2/3, and using the lower bound in (5.1), we ob-
tain (1.20).
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Small β First, we decompose the partition function over the three regimes for −Hn: the
moderate deviation, the large deviation and intermediate regimes. Thus,

Z−
n

(
β

n2/5

)
= ZI (β) + ZII(β) + ZIII(β), (5.3)

with for ε small

ZI (β) = E

[
exp

(
−β

Hn

n2/5

)
1{n 1

2 +ε < −Hn < n
2
3 +ε}

]
,

ZII(β) = E

[
exp

(
−β

Hn

n2/5

)
1{n 2

3 +ε < −Hn < n}
]
,

and ZIII(β) corresponds to the remaining regimes.
We first deal with ZI (β) and rely on Chen’s result (1.2). We note that from Chen’s proof,

the result (1.2) is actually uniform in the sequence ξn, in the sense that there is a sequence
{δn} going to 0, such that for any ξn ∈ [nε, n1/6−ε], we have

P

(−Hn√
n

> ξn

)
= exp

(
− ξ 2

n

2cd

(1 + δn)

)
. (5.4)

We have

ZI (β) = exp(βn1/10+ε) + β

∫ n4/15−ε

n1/10+ε

eβuP

(−Hn

n2/5
> u

)
du

= exp(βn1/10+ε) + βn1/10
∫ n1/6−ε

nε

exp

(
βn1/10u − u2

2cd

(1 + δn)

)
du (5.5)

Now, the asymptotical behaviour is found as we maximize βn1/10u − u2

2cd
, which is

cdβ
2n1/5/2. In other words, it is a simple computation that we omit, which yields for any

β > 0,

lim
n→∞

1

n1/5
logZI (β) = cdβ

2

2
. (5.6)

We deal now with ZII , which corresponds to the regime studied in Theorem 1.1. We show
that for β small, ZII(β) ≤ exp(εn1/5), for ε small. Note that

ZII(β) ≤
log2(n1/3)∑

k=0

e2k+1n4/15+εβP

(
2kn4/15+ε ≤ −Hn

n2/5
< 2k+1n4/15+ε

)
(5.7)

In view of (5.7), it is enough to show that for n3/5 ≥ ξn ≥ n4/15+ε , we have

P (−Hn ≥ ξnn
2/5) ≤ e−2βξn . (5.8)

From (1.5), we have in this regime

P (−Hn ≥ ξnn
2/5) ≤ exp(−c+

3 (ξnn
2/5−2/3)4/5n1/3), (5.9)
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and (5.8) requires that

c+
3 ξ 4/5

n n3/25 ≥ 2βξn ⇐⇒ ξn ≤
(

c+
3

2β

)5

n3/5. (5.10)

Since ξn ≤ n3/5, (5.10) holds if β < c+
3 /2.

Finally, we deal with ZIII .

ZIII ≤ exp(βn1/2−2/5+ε) + exp(βn2/3−2/5+ε)P (−Hn ≥ n2/3−ε)

≤ exp(βn1/10+ε) + exp

(
−n1/3−ε

4cd

+ βn4/15+ε

)
. (5.11)

ZIII is negligible when ε is such that 4
15 + 3ε ≤ 1

3 .
We finally show (1.22). We choose p > 1 such that pβ < β1, and use Hölder’s inequality

E[e−β
Hn

n2/5 1{ln(z)>bn1/5}�=∅] ≤ (E[e−pβ
Hn

n2/5 ])1/p(P (∃z, ln(z) > bn1/5))1/q

(
q = p

p − 1

)

≤ eCβ2n1/5
(nP0(ln(0) > bn1/5))1/q

≤ n1/q exp

((
Cβ2 − χdb

q

)
n1/5

)
. (5.12)

As we choose b large enough in (5.12), we obtain (1.22).

References

1. Asselah, A.: Large deviations for the self-intersection times for simple random walk in dimension 3.
Probab. Theory Relat. Fields 141(1–2), 19–45 (2008)

2. Asselah, A.: Annealed upper tails for the energy of a polymer. Preprint
3. Asselah, A.: Shape transition under excess self-intersection for transient random walk. Ann. Inst. Henri

Poincaré (2009, to appear)
4. Asselah, A., Castell, F.: Random walk in random scenery and self-intersection local times in dimensions

d ≥ 5. Probab. Theory Relat. Fields 138(1–2), 1–32 (2007)
5. Becker, M., König, W.: Moments and distribution of the local times of a transient random walk on Z

d .
J. Theor. Probab. 22(2), 365–374 (2009)

6. Biskup, M., König, W.: Long-time tails in the parabolic Anderson model with bounded potential. Ann.
Probab. 29(2), 636–682 (2001)

7. Buffet, E., Pulé, J.V.: A model of continuous polymers with random charges. J. Math. Phys. 38, 5143
(1997)

8. Chen, X.: Limit laws for the energy of a charged polymer. Ann. Inst. Henri Poincaré 44(4), 638–672
(2008)

9. Chen, X., Khoshnevisan, D.: From charged polymers to random walk in random scenery. In: Proceedings
of the Third Erich L. Lehmann Symposium. IMS Lecture Notes-Monograph Series, vol. 57, pp. 237–251
(2009)

10. Derrida, B., Higgs, P.G.: Low-temperature properties of directed walks with random self-interactions.
J. Phys. A 27(16), 5485–5493 (1994)

11. Derrida, B., Griffith, R.B., Higgs, P.G.: A model of directed walks with random interactions. Europhys.
Lett. 18, 361–366 (1992)

12. Donsker, M.D., Varadhan, S.R.S.: On the number of distinct sites visited by a random walk. Commun.
Pure Appl. Math. 32(6), 721–747 (1979)

13. Garel, T., Orland, H.: Mean field model for protein folding. Europhys. Lett. 6, 307 (1988)
14. Kantor, Y., Kardar, M.: Polymers with self-interactions. Europhys. Lett. 14, 421–426 (1991)
15. Nagaev, A.: Integral limit theorems for large deviations when Cramer’s condition is not fulfilled I. Teor.

Veroyatn. Primen. 14, 51–64 (1969). (Russian)



644 A. Asselah

16. Nagaev, A.: Integral limit theorems for large deviations when Cramer’s condition is not fulfilled II. Teor.
Veroyatn. Primen. 14, 203–216 (1969). (Russian)

17. Nagaev, S.: Large deviations of sums of independent random variables. Ann. Probab. 7(5), 745–789
(1979)

18. Nagaev, S.: Lower bounds for the probabilities of large deviations of sums of independent random vari-
ables. Teor. Veroyatn. Primen. 46(1), 50–73 (2001) (Russian); translation in Theory Probab. Appl. 46(1),
79–102 (2002)


	Annealed Lower Tails for the Energy of a Charged Polymer
	Abstract
	Introduction
	Heuristics

	Preliminaries
	Sums of Independent Variables
	On Self-intersection Local Times

	Upper Bounds
	Top Level Term
	Bottom Level Term
	Dimension 3
	Upper Bound in Theorem 1.1: xn=xin n2/3< n
	Upper Bound in Theorem 1.1: xn=xin with 1>xi>a1

	Dimension 4 or More
	Proof of the Upper Bound in (1.7)
	Proof of (1.8)
	Dimension d>=4, and nd+2d+4<xin<xin with xi<1


	Lower Bounds
	On Localizing the Walk
	The Case d=3 and a0<=xin<=xin1/3 with xi<1
	The Case d>=4 and nd+2d+4«xin<=epsilon04n (epsilon0 Defined Before (4.2))
	The Case d>=4 and xin=xin with epsilon04 <xi<1
	The Case d>=4 and n2/3«xin«n(d+2)/(d+4)

	Proof of Proposition 1.7
	Large beta
	Small beta

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


